本文共 2476 字,大约阅读时间需要 8 分钟。
印象中CAP理论开始流行是从Amazon Dynamo的论文开始的,Amazon的CTO还在他的中介绍了最终一致性的概念,从此以后,各种会议和交流中都少不了CAP的影子。然而,对于分布式系统工程设计和开发来说,CAP意味着什么呢?
CAP 理论由 Berkerly 的 Brewer 教授提出,三者的含义如下:
CAP 理论认为,三者不能同时满足,并给出了证明,简单阐述如下:假设系统出现网络分区为 G1 和 G2 两个部分,在一个写操作 W1 后面有一个读操作 R2 , W1 写 G1 , R2 读取 G2 ,由于 G1 和 G2 不能通信,如果读操作 R2 可以终结的话,必定不能读取写操作 W1 的操作结果。
由于CAP三者无法同时满足,Amazon Dynamo论文中引入了用户可配置的NWR策略,在CAP三个特性中作出权衡。比如N=3, W=3, R=1强调一致性;N=3, W=1, R=1强调可用性;N=3, W=2, R=2是一种折衷的策略。另外,还有一些NOSQL系统把CAP理论当成一种借口,认为既然我们不能同时满足一致性和可用性,那NOSQL系统就牺牲一致性。这些说法本身虽然不能说有错,但我们至少需要思考两个问题:笔者认为,最初的CAP理论只是粗略地告诉我们”天下没有免费的午餐”,对于NOSQL系统设计指导意义不大。原始的CAP理论描述有如下缺陷:
一般可以认为:工程上网络分区总是存在,比如机器故障或者网络异常,一致性和可用性不能同时满足。且工程上从来不要求绝对的一致性或者可用性,而是寻求一种平衡,可以将一致性和可用性分别重定义为Harvest和Yield。
CAP理论可以演化为在工程上寻找一种方法,在”成功请求占的百分比”和”请求结果的真实程度”之间取得一个权衡,详细描述可以参考Coda的。然而,这个描述仍然不够具体,下面我们就有总控节点的系统(如GFS+Bigtable)和P2P系统(如Amazon Dynamo)两类系统的CAP含义分别进行说明。
首先我们必须明确一致性的概念。NOSQL系统经常提到最终一致性模型:假如客户端A写入一个值到存储系统,客户端B最终总是能够读取到A写入的最新值,这里有一个时间窗口,依赖于交互延迟,系统负载以及复制技术中的replica的个数。Amazon CTO宣称Dynamo为最终一致性系统,然而,这里的最终一致性具有很大的欺骗性,因为虽然客户端B能够读到其它客户端写入的所有数据,但是可能出现多个节点更新同一个值的情况,需要依赖冲突合并来解决多机操作顺序问题。后续的文章中,我们都会把Amazon Dynamo这种需要依赖操作合并,可能会丢失数据的模型从最终一致性模型中排除出去。最终一致性模型要求同一份数据同一时刻只能被一台机器修改,也就是说机器宕机时需要停很短时间写服务。
对于带有总控节点的系统,将CAP理论的定义做出适当的调整如下:
带有总控节点的NOSQL系统一般是最终一致性系统,允许机器宕机时停止很短时间,比如10s的部分数据写服务,但是不允许停读服务,且服务恢复时间越短越好。大多数NOSQL系统都是对一份数据保留多个备份,同一时刻只有一个备份为主,提供写服务,其它备份为辅,同步主备份的写操作,所有的备份都可以提供读取服务,且主备份提供保证强一致性的读服务。当主备份所在机器发生故障时,需要等一段时间才能由原来的辅备份接替主备份提供写服务。
类似Amazon的P2P去中心化系统提供需要依赖冲突合并的一致性,比如Cassandra中的“last write wins”冲突合并策略,虽然并不完美但确实能够解决很多问题。这样的系统能够通过用户配置NWR策略来权衡一致性和可用性,可以做到单台机器宕机时读写服务都不停止。
最后,再次提醒大家设计系统时:不要过分迷恋CAP,认清最终一致性,理智对待NWR。
转载地址:http://hihcx.baihongyu.com/